

Lessons Learned from a multi-aircraft airborne and In situ campaign in the Mississippi Delta: **10 recommendation**s

Marc Simard, Ke Liu, Daniel Jensen, Ernesto Rodriguez, Cahtleen Jones Benoît Laignel, Edward Castañeda, Alex Cristensen Christine Lyon, Tamlin Pavelsky

Global Distribution of Blue Carbon Ecosystems

Recommendation #1

Coastal regions, river deltas and estuaries should be considered in SWOT masks

NASA

Contact: Ma

Flows, Everywhere

Water Carrying Sediment, Carbon and nutrients

Input from Ocean (tides, waves, currents)
 Open water surface flows (rivers, lakes)
 Water flows through wetlands

ation

Ve

Discharge is the total amount of water from land to Ocean (includes rivers, channels and coastal flows)

Bayou Vista

Bateman Island

Idlewild

Rec #2: Use simultaneous multiple sensors to capture connectivity of processes

Contact: Marc.simard@jpl.nasa.gov

The Mississippi Delta Campaign 2015

UAVSAR (for NISAR)

- L- band Radar, full-pol, 6m
- Shallow bathymetry,
- Above Ground Biomass AGB
- Water level changes within marshes
- Water surface velocity

AirSWOT (for SWOT)

Ka-band radar interferometer Centimeter-level open water surface elevation and surface slope

AVIRIS-NG (for HyspIRI and more)

- Imaging spectroscopy (432 bands) High spatial resolution (4m) Vegetation species and structure classification Water concentrations of CDOM & Sediments

In Situ

Biomass, species, ADCP, water samples, reflectance and bathymetry

- N45

30502

The Mississippi Delta Campaign 2016

UAVSAR (for NISAR)

- L- band Radar, full-pol, 6m Shallow bathymetry,
- Above Ground Biomass AGB Water level changes within marshes Water surface velocity

ASO (for SWOT)

- Riegl lidar (full waveform) ~5pts/m²
- Water Level and change
- Canopy height and AGB

AVIRIS-NG (for HyspIRI and more)

- Imaging spectroscopy (432 bands) High spatial resolution (4m)
- Vegetation species and structure classification Water concentrations of CDOM & Sediments

In Situ

Biomass, species, ADCP, water samples, reflectance and bathymetry

Instruments

- N45

30502

River Discharge + Sediment Concentrations = Export

AirSWOT coverage May 2015

Rec #3: AirSWOT requires ~30-50% swath overlap and cross validation passes to estimate timevarying phase delay

AirSWOT surface elevation data (2015/05/09) & location of the Wax Lake Delta

AirSWOT DEM/Image Wax Lake Delta

Contact: Marc.simard@jpl.nasa

AirSWOT time varying phase delay

How much vegetation penetration will SWOT have?

25.

5.0

25.0	 Flooded vegetation ranges from dense cypress 		
	to open shrub to grasses.		
22.5	Tree height from SRTM and lidar		
	• For small incidence angles (<10 deg), there is		
20.0	significant penetration into the canopy and the		
(bəp) ə	reported height is near the water surface.At larger incidence angles, vegetation starts		
15.0 Pillo	to approach true vegetation height (but is always below).		
12.5 Incidence	 Degree of penetration is dependent on canopy gap density. 		
10.0	Rec #4:		
7.5	Measure water levels below		

vegetation canopies

October 2016: The Simultaneous Acquisition of UAVSAR, ASO, AVIRISNG and In Situ Field Data

Background: Google Earth; Overlay=UAVSAR and AVRISNG Yellow=ASO

- Collected simultaneous airborne and in situ data at low and high tide
- 1. AVIRISNG (spectroscopy) for water color.
- 2. UAVSAR (repeat-pass inSAR) for water level change within marshes.
- 3. ASO (lidar) elevation, slope and change of water surface in river channels.
- 4. Two boats for field cal/val
 - ADCP (water current)
 - bathymetry
 - Water surface level + slope
 - Handheld spectometer data
 - Carbon+sediment+nutrient concentration

Rec #5:

When using Lidar, prepare two flight plans with nadir-only lines for <u>high</u> AND <u>low</u> altitude lidar flights to secure reflections and mitigate clouds.

2016: Extensive In Situ Field Data

Rec #6 Duplicate in situ measurements as much as possible and collect multidisciplinary measurements simultaneously

Tidal Phases

Rec #7: To learn the dance, follow its steps. Plan for multiple Water level gauges and intersection with tributaries to capture tidal wave propagation and overflow delays.

Absolute Calibration of water level gauges

0.5

0

15:00

15:15

15:30

15:45

16:00

Time

16:15 16:30

16:45

17:00

Rec # 8

To obtain absolute elevation, stay away from trees and integrate for more than 2 hours

Lidar transects

Showing water surface elevation changes and anomalies near tributaries

Rec #9 If you have enough gauges, sample expected anomalies (i.e. confluence), otherwise just be aware of them.

Modelling Hydrology DELFT3D implementation Tidal Phase: in the Channel

	Simulation	Measurements	0.60 Water Level at Gauges on Oct 18, 2016
High Tides	25 min (WL10 and WL1)	1 hr 20 min (WL10 and WL4)	0.50 WL2 WL3 WL4 22:20 332:22 WL4 WL4
Low Tides	2 hr 15 min (WL10 and WL4)	1 hr 10 min (WL10 and WL4)	06:35 05:00 05:00 05:00
Rec #10 Keep hydrology model simple and real			 30 0.25 0.25 14.96.90
NASA			0.20 00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00 Time

Contact: Marc.simard@jpl.nasa.gov

10 recommendations

- 1. Coastal regions, river deltas and estuaries should be considered in SWOT masks
- 2. Use simultaneous multiple sensors to capture connectivity of processes
- 3. AirSWOT requires ~30-50% swath overlap and cross validation passes to estimate timevarying phase delay
- 4. Measure water levels below vegetation canopies
- 5. When using Lidar, prepare two flight plans with nadir-only lines for <u>high</u> AND <u>low</u> altitude lidar flights to secure reflections and mitigate clouds.
- 6. Duplicate *in situ* measurements as much as possible and collect multi-disciplinary measurements simultaneously
- 7. To learn the dance, follow its steps. Plan for multiple Water level gauges and intersection with tributaries to capture tidal wave propagation and overflow delays.
- 8. To obtain absolute elevation, stay away from trees and integrate for more than 2 hours
- 9. Sample expected anomalies (i.e. confluence), otherwise just be aware of them.
- 10. Keep hydrology model simple and real to connect in situ and airborne data in space and time

AVIRIS-NG Calibration

Rec#5

For optical sensors, plan for the longer campaigns. Coasts are often cloudy or hazy.

Seamless mosaics of AVIRISNG images

- Reflectance
- Bidirectional reflectance correction
- Extract species spectra
- Map species and biomass

Daniel Jensen Friday 08:30 - 08:45 Moscone West-3001

ource: Esn DigitalGlobe, GeoEye, Earthstar Geographics NES/Arous DS, USDA, USOS, AEX, Getmapping, Aerograf, GN IP sa symptometry and the GIS User Communey

AVIRISNG to Estimate Sediment Concentrations

-29°40'N -29°30'N TSS mg/L High : 100 Low : 0 10 29°20'N 91°20'W 91°10'W

Landscape scale hydrology at the coastal interface.

60 Hours:

72 Hours:

Contact: Marc.simard@jpl.nasa.gov

Hydrology Modeling: Water Surface Level and Discharge from models

The Mississippi Delta Campaign 2015 Data Collection Strategy

To capture tidal processes and to complement SOWT

Wax Lake Main Channel + Branch 2/2c Height/Slope

Contact: Marc.simard@jpl.nasa.gov